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Abstract. Modeling and observational techniques are pivotal in aerosol research, yet each approach exhibits inherent limita-

tions. Aerosol observation is constrained by its limited spatial and temporal coverage compared to models. On the other hand,

models tend to possess higher uncertainties and biases compared to observations. Aerosol data assimilation has gained popular-

ity as it combines the advantages of both methods. Despite numerous studies in this domain, few have addressed the challenges

faced in assimilating aerosol data with significant differences in magnitude and degree of freedom between the model state5

and observations, especially in the vertical direction. These challenges can lead to the preservation or even exacerbation of

structural inaccuracies within the assimilation process. This study investigates the sensitivity of dust aerosol data assimilation

to the vertical structure of the aerosol profile. We assimilate a variety of dust observations, encompassing ground-based par-

ticulate matter (PM10) measurements and satellite-derived dust optical depth (DOD) data, using the Ensemble Kalman Filter

(EnKF). The assimilation process is elucidated, detailing the assimilation of raw ground-based and satellite-based observations10

for an optimized three-dimensional (3D) posterior state. To demonstrate the impact of accurate versus erroneous prior aerosol

vertical profiles on the assimilation result, we select three cases of super dust storms for analysis. Our findings reveal that the

assimilation of ground observations would optimize the dust field at the ground in general. However, the vertical structure

presents a more complex challenge. When the prior profile accurately reflects the true vertical structure, the assimilation pro-

cess can successfully preserve this structure. Conversely, if the prior profile introduces an incorrect structure, the assimilation15

can significantly deteriorate the integrity of the aerosol profile. This is also found in the assimilation of DOD, which exhibits a

comparable pattern in its sensitivity to the initial aerosol profile’s accuracy.
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1 Introduction

In recent decades, atmospheric aerosol has garnered extensive attention due to its impact on the environment (Buseck and

Pósfai, 1999; Zhao et al., 2020) and human health(Zhu et al., 2021). Numerous research studies have been conducted on the20

characterization (Mhawish et al., 2021), source apportionment (Wu et al., 2018), and model simulation (Lee et al., 2011) of

aerosols. One crucial tool for understanding aerosol processes and forecasting is the chemical transport model (CTM), which

can generate continuous three-dimensional aerosol fields on a large scale. However, despite significant efforts to develop and

improve CTM parameter schemes, studies have pointed out that significant uncertainties still exist in CTM simulations (Vignati

et al., 2010; Stier et al., 2013). These uncertainties primarily arise from emission sources (e.g., intensity, location), meteoro-25

logical inputs (e.g., wind mixing, precipitation), and incomplete parameter schemes (e.g., chemical reactions) (Benedetti et al.,

2018). At the same time, aerosol measurements have advanced owning to development of sensors and increased investment.

These include chemical kinetics studies in laboratories (Kolb and Worsnop, 2012), a network of loosely-distributed ground

monitoring stations (Gueymard and Yang, 2020), and regularly scanning satellites providing global coverage (Sogacheva et al.,

2020). Although these measurements offer higher accuracy, challenges persist. So far, obtaining continuous three-dimensional30

aerosol measurements on a large scale remains impractical and costly. Measurements are limited to surface level concentrations

of total particle matters, column-integrated aerosol optical depths (AOD), and vertical profiles of total aerosol extinction. These

measurements have fewer degrees of freedom compared to the complexity of reality (Pappalardo et al., 2014; Qin et al., 2021).

Data assimilation incorporates model and measurements to generate a posterior that holds the strengths of both (Bannister,

2017). Various data assimilation techniques have been developed for different applications, including hydrology (Reichle et al.,35

2002), geology (Peng and Liu, 2022), and atmospheric science (Hamill, 2006). These methods are typically based on either

variational or ensemble approaches (Whitaker et al., 2009; Law and Stuart, 2012). The variational method is particularly useful

for emission inversion (Bergamaschi et al., 2022; Jin et al., 2023a). Ensemble-based filters also have demonstrated superior

performance in sequential forecasting without the adjoint or tangent linear model that required by the variational method. By

assimilating real-time observations, these filters generate optimized initial fields that enhance forecast accuracy (Houtekamer40

et al., 2005). Since the introduction of the classic Ensemble Kalman Filter (EnKF) (Evensen, 1994), a considerable amount of

research has focused on its application and improvement. Several variations of the EnKF, such as EnSRF (Whitaker and Hamill,

2002) and LETKF (Hunt et al., 2007), have been proposed to address computational complexity, accuracy, and robustness

issues. Although these advancements have been validated, challenges related to the model’s background error covariance and

observational data quality control can still impact the assimilation results significantly.45

In data assimilation methodology, an observation operator is required for deriving the innovation vector that quantifies the

difference between observation field and simulation field (Ma et al., 2020). These two usually have different degrees of free-

dom. With that, the optimized state then could be calculated considering the integration of background and observational

penalties. In perspective of aerosol data assimilation, the main object is to reproduce the optimal aerosol states (Liu et al.,

2011), concerning their spatial, vertical, aerosol species and size distribution features. While the available observations com-50

monly measure their mixed state, such as AOD that is column-integrated optical extinction of all aerosols, and ground PM10
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concentration measurement that is additive sum of all particles with diameter less than 10 µm. They are not directly comparable

to the aerosol state. For ground measurements, the monitoring stations are sparsely distributed. High data vacancy is inevitable

in AOD product as a result of retrieval failure. The order of the observations is therefore commonly much lower than the model

state or the degree of freedom is limited compared to that of model state. Mathematically, the assimilation result highly depends55

on the background error covariance for transferring the increments from the low-degree observational space into the full model

space. Given a partially erroneous prior, the assumptions about the prior states can be reserved or even exacerbated with the

lack of observations. Only a few studies have focused on some of these aspects. We recently found that the fraud assumption

of aerosol size distribution from prior model gives rise to worsen posterior (Jin et al., 2023b). In addition, the position error

in the dust plume simulation can cause failure in assimilating valid observations (Jin et al., 2021). As to the vertical structure,60

most studies have focused on proposing relevant assimilation methods to assimilate observations like Cloud-Aerosol Lidar

with Orthogonal Polarization (CALIPSO) (Sekiyama et al., 2010; Cheng et al., 2019; Ye et al., 2021), Light Detection and

Ranging (LiDAR) (Wang et al., 2022). The sensitivities of assumptions in the prior simulations need to be explored.

Take dust aerosol data assimilation for instance, the most representative observation sources are direct observation like PM10,

PM2.5 concentrations and indirect observation like dust optical depth (DOD), extinction coefficient (Jin et al., 2022). Since they65

all are a combination of different particles, it is necessary to perform the bias-correction before assimilation (Jin et al., 2019;

Ma et al., 2020). Afterwards, through assimilation analysis, few observations can nudge the whole model state space. While

in reality, the ground stations produce scattered concentrations on ground, satellite and LiDAR receive column-integrated

information about the aerosol or a single profile once a day. None of them can provide a continuous vertical information about

the aerosol from a comprehensive perspective in space. When there is fraud information about the dust aerosol structure in70

model prior, due to the considerably greater degree of freedom of model state, data assimilation algorithms may fail to correct

it or even worse, further degrades the vertical dust aerosol loading.

There is limited research addressing the impact of flawed aerosol prior assumptions on the degradation of the assimilated pos-

terior, particularly concerning vertical structures. Gwyther et al. (2023) delved into the implications of 4DVar data assimilation

on mesoscale eddy representation in the vertical dimension, highlighting that inadequate prior knowledge of these structures75

significantly hinders improvement in the assimilated simulations. This issue extends to aerosol data assimilation, where erro-

neous assumptions regarding aerosol vertical distribution lead assimilation methods to maintain or exacerbate inaccuracies.

This study focuses on several major dust storm events that occurred in the spring of 2021, utilizing them as case studies. We

conduct separate data assimilation experiments involving ground-level PM10 measurements and satellite-based AOD data to

demonstrate explicitly how misleading vertical prior information can distort the posterior results. The LOTOS-EUROS model80

facilitates the reproduction of dust dynamics and generates the initial dust load priors. For assimilation, we employ an EnKF

algorithm, incorporating bias-corrected PM10 data from ground stations and DOD retrievals from the Himawari-8 satellite.

To validate, we employ aerosol profile observations from CALIPSO and LiDAR systems. By presenting both favorable and

detrimental scenarios, this work underscores the high sensitivity of data assimilation processes to the accuracy of assumed

vertical structures, thereby emphasizing the criticality of precise vertical profiling in aerosol studies.85
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The remainder is organized as follows: Section 2 described the model used for dust aerosol simulation and the dust ob-

servations used in this study. Section 3 introduces the assimilation algorithm applied to assimilate the observations and the

experiment settings. Section 4 discusses the assimilation results and validate the results with the CALIPSO and LiDAR obser-

vations. Finally, Section 5 summaries this study.

2 Dust aerosol simulation and observations90

This section introduces the model used for simulating the dust aerosol. Then describe the observation methods applied for

monitoring the dust including ground monitor station, Himawari-8, CALIPSO and LiDAR. Among these, ground PM10 from

ground monitor stations and DOD from Himawari-8 are used for assimilation. Extinction profile from CALIPSO and LiDAR

are used to validate the posterior profile.

2.1 Dust simulation95

2.1.1 LOTOS-EUROS

The LOTOS-EUROS v2.2 is used to simulate the dust aerosol. The LOTOS-EUROS model is a 3D chemistry transport model

aimed for air quality forecasting (Manders et al., 2017). It has also been applied in source apportionment and emission inversion

worldwide. In this study, The modeling domain spans from 15◦ N to 50◦ N and from 70◦ E to 140 ◦ E with spatial resolution

of 0.25◦× 0.25◦. Vertically, it comprises 21 layers with a top level at 10 km, which is adequate for recognizing the vertical100

structure. Dust aerosol processes including emission, advection, diffusion, deposition and sedimentation are considered in the

model.

2.2 Dust observations for assimilation

2.2.1 Ground PM10

There are over 1600 ground air quality monitor stations standing all over China. Their spatial distribution can be seen in Fig.105

1 (blue scatters). They provide hourly air pollutant concentrations including PM2.5, PM10, O3, NO2, SO2 and CO. PM10

can appropriately represent the dust load for it is under the size definition of fine and coarse dust (Adebiyi et al., 2023). Its

uncertainty is also relatively lower than some remote sensing instruments. However, PM10 is a combination of various species.

Assimilating such observations with weak or fraud representativeness can diverge the model. It is then necessary to perform

bias-correction (BC) for removing the non-dust part before they are assimilated. Details concerning the method can be found110

in Jin et al. (2022). Afterwards, it can be used to correct the model simulation by data assimilation.

2.2.2 Himawari-8 DOD

The Himawari-8 geostationary satellite, operated by the Japan Meteorology Agency (JMA), provides aerosol optical informa-

tion covering East Asia and Western Pacific Region at a time-resolution of 10-min (Yumimoto et al., 2016). This allows for
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monitoring the source and movement of dust at high spatial-temporal resolution. Its products, Ångström exponent (Å) and115

Aerosol Optical Thickness (AOT) at 550 nm, are selected to measure the dust optical depth (DOD). These data are merged

to model grid (0.25◦× 0.25◦) and hourly resolution. A bias correction produce is applied before assimilation. Details can be

found in Supplementary S1.

2.3 Dust observations for validation

Aerosol extinction coefficient from the CALIPSO and LiDAR is used to validate the vertical structure of dust aerosol.120

2.3.1 CALIPSO

The Cloud-Aerosol LiDAR with Orthogonal Polarization (CALIOP), onboard the CALIPSO satellite, provides vertical struc-

tures and types of aerosols on a global scale (Winker et al., 2010). It has a spatial resolution of 333 m and a vertical resolution

of 30 m. A normal extinction profile sample can be seen above the black dash line on map in Fig. 1 (a). It has been wildly used

in investigating the aerosol distribution and evolution (Xu et al., 2020; Zhang et al., 2020; Han et al., 2022; Chen et al., 2023),125

data assimilation (Sekiyama et al., 2010; Cheng et al., 2019; Escribano et al., 2022). Here, its product, extinction coefficient at

532 nm, is taken as the aerosol profile validation set to identify the vertical distribution of the dust load.

2.3.2 Polarization LiDAR

Polarization LiDAR deployed on the ground can provide continuous measurements about the vertical details of the atmo-

spheric environment with high resolution (Hofer et al., 2017). Recently, Wang et al. (2021) collected the dust extinction coef-130

ficient data through a dual-wavelength aerosol LiDAR built in the tower of the Institute of Atmospheric Physics (39◦58′35′′N,

116◦22′41′′E, red star in Fig. 1 (a)). The device provided the dust information with a high vertical resolution of 30 m and

temporal resolution of 15 min. The vertical profile development of the several super dust storms occur in spring, 2021 was

captured thoroughly by the instrument, thus make it a crucial measurement source to learn about the vertical structure and

its development during the dust storm. In this study, these data are employed to compare the vertical structure from model135

simulation and assimilation analysis.

3 Assimilation methodology and experiments

This Section first illustrates the methodology of the classic EnKF that were used in Section 3.1, then sensitivity of the aerosol

posterior to the vertical structure were emphasised when assimilating the ground PM10 concentration in Section 3.2 and when

assimilating the AOD in Section 3.3. Cases experiments for evaluating the sensitiveness are described in Section 3.4.140

3.1 EnKF

The data assimilation algorithms used in this study is the stochastic EnKF formulated by Burgers et al. (1998). It is implemented

in our self-developed PyFilter toolbox (Pang, last access: May. 2024). Its capability of improving dust forecasting had been
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CALIPSO

Ground station
LiDAR

Barren areas

Figure 1. Spatial distribution of ground monitor stations (blue scatters), location of the LiDAR (red star) with upward scanning ray (orange

cylinder) and aerosol extinction profile sample scanned by the CALIPSO satellite (trajectory is plotted as the gray line on ground).

proven in our recent research (Pang et al., 2023). We didn’t adopt any other variant of EnKF for the reason that the problem we

are going to explain is contingent but universal in aerosol data assimilation applications.145

EnKF is a Monte Carlo approach based on Kalman filter theory. EnKF maintains a set of model states to approximate the

probability distribution of the model state or parameter. It includes the forecast step and the analysis step. In the forecast step,

each ensemble member xa,i
t−1 is integrated forward according to the model dynamics M to generate a forecast for the system

state xf,i
t at the next moment.

xf,i
t =M(xa,i

t−1) (1)150

In the analysis step, the states of each member is adjusted based on observational data to approach the true state. This

adjustment process is implemented based on the error from model prior and observation. In EnKF, the model prior error

covariance matrices Pf is calculated by ensemble approximation method following:

Pf =
1

N− 1
(xf

i −xf )(xf
i −xf )T (2)
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Figure 2. Schematic diagram of the sensitivity of data assimilation to aerosol vertical structure. Assimilation of ground and AOD observation

under positive condition with AOD priors (gray hollow diamond), AOD observation (blue solid diamond) in upper box and true profile (red

line), ensemble priors (gray dash line), prior mean (black line), ground observation (blue star) in lower box (a.1). Figure on the right are for

the posteriors (a.2). Figures in the second row are prior (b.1) and posterior (b.2) of the ground assimilation under negative condition. Figures

in the third row are prior (c.1) and posterior (c.2) of the AOD assimilation under negative condition.
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N is the number of ensembles. xf
i is the ith individual of the ensemble prior states and xf means the average of ensemble155

members.

Then, a weight matrix K, also referred to as Kalman Gain, can be obtained by

K = PfHT(HPfHT +R)−1 (3)

The a posteriori ensemble individual xa
i is calculated by :

xa
i = xf

i +K(y + ϵi−Hxf
i ) (4)160

ϵi is the extra perturbation and it’s variance subjecting to the diagonal of observation error covariance R. It serves to maintain

the ensemble spread van Leeuwen (2020).

Meanwhile, the a posteriori xa can be updated via

xa = xf +K(y−Hxf ) (5)

From the equations above we can tell that the a posteriori is dependent on both prior and observations. These within different165

space are aligned by the observation operator H.

Figure 2 briefly illustrates the process of EnKF applied in this paper. In the upper row of panel (a.1), we have ensemble AOD

priors (gray hollow diamond) and AOD observation (blue solid diamond), and in below there are idealized aerosol vertical

profiles including a true profile (red line), ensemble prior profiles (gray dash line) and an observation on ground level (blue

star). It is noticeable that there are great differences between priors and observation both on ground and AOD in two conditions.170

Figures in panel (a) are in positive condition. Which both the AOD and 3-D mass priors has underestimated the loading while

the structure is consistent with the true profile. Through assimilating ground or AOD observations, both the ground and vertical

dust loading are nudged to be better consistent with the observations.

3.2 Ground PM10 assimilation

In this section, impact of ground measurements data assimilation on the aerosol vertical structure is explained. In practice, each175

of the PM10 observations could be assimilated to nudge the 3D states that are correlated. The increments is transferred from

the the observation space in the model space via the Kalman Gain K shown above. To easily evaluate the posterior, we solely

perform the assimilation analysis at the pixels where PM10 measurements are available. So here we confine the states only in

vertical direction in one pixel to better identify the sensitivity, and assuming the prior states xf with total k levels:

xf = [xf
1 , · · · · · · , xf

k ]T (6)180
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In which case, the error covariance matrix Pf is constructed by the variance of ensemble states and covariance in the vertical

direction, and the observation operator H only converts the single observation on ground level:

Pf =




C11 C12 · · · C1k

C21 C22 · · · C2k

...
...

. . .
...

Ck1 Ck2 · · · Ckk




(7)

H = [1 0 · · · 0] (8)

Calculation of K follows the Eq. 3 and substitute Eq. 7 and Eq. 8 into it:185

K = PfHT(HPfHT +R)−1 = [C11, · · · · · · , Ck1]T(C11 + σ2
y)−1 (9)

σ2
y is the error of the ground observation.

Substitute K into the update function:

[xa
1 , · · · · · · , xa

k]T = [xf
1 , · · · · · · , xf

k ]T + [C11, · · · · · · , Ck1]T(C11 + σ2
y)−1(y−xf

1 ) (10)

Here, we have the posterior state xa
i on each level.190

On the ground level, the posterior state is obtained as:

xa
1 =

σ2
y

C11 + σ2
y

xf
1 +

C11

C11 + σ2
y

y (11)

If the observation error is much smaller than the prior error (σ2
y ≪ C11). We can have:

xa
0 ≈ y (12)

which means that the posterior on ground level is close to the ground observation. The ground data assimilation has successfully195

tuned the ground prior state.

On the other hand, for the state on ith level, the posterior xa
i is calculated by:

xa
i = xf

i +
Ck1

C11 + σ2
y

(y−xf
1 ) (13)

To better identify the correctness of vertical structure, define a vertical ratio vk here:

vk =
xi

x1
(14)200

which is the ratio of state on ith level to ground level.

Divide xf
i on both sides of Eq. 13:

va
i = vf

i +
Ck1

C11 + σ2
y

y−xf
1

xf
1

(15)
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When we have a strong vertical correlation and small observation error, we have Ck1
C11+σ2

y
≈ 1. If the prior vertical structure

is far from the true structure vf
i ≪ vtrue

i or vf
i ≫ vtrue

i . Then, the vertical structure of posterior is high dependent on y−xf
1

xf
1

. If205

xf
1 and y deviate far from each other, the increment can be large, thus further enhance the incorrect prior structure vf

i .

Figure 2 (b) illustrates this kind of pattern. In panel (b.1), the priors have greatly underestimated the aerosol concentration

on the ground level. Meanwhile, over the upper space, it has overestimated the intensity and altitude of the dust loading to

some extent. After assimilating the ground observations, as shown in panel (b.2), the posterior aerosol loading (gray dash line)

is tuned to a large extent and much closer to the observation on ground layer. While for the vertical distribution, a greater210

overestimation than the prior can be noticed. The original incorrect profile is significantly amplified.

3.3 AOD assimilation

Assimilation of AOD is carried out by connecting the 3-D aerosol priors xf and AOD priors τ f . It is assumed that the vertical

structure of aerosol field remains the same for the AOD lacks the vertical information. Then, a 3-D mass concentration field

can be calculated by finding the optimal AOD field.215

To begin with, value of AOD is related to the aerosol mass concentration, aerosol type, humidity, et al. Here, it’s assumed to

be linearly related to the aerosol mass concentration field xf solely. The column-integrated AOD is calculated by the summary

of aerosol mass concentration xf
i on each level:

τ f =
k∑

i=1

Mxf
i (16)

M is the linear model operator that calculates the AOD from the mass concentration.220

Calculation of posterior AOD τ a follows the Eq. 5:

τ a = τ f +K(y−Hτ f ) (17)

Then, substitute Eq. 16 into Eq. 17. We can bridge the mass concentration field and AOD field:

M
k∑

i=1

xa
i =M

k∑

i=1

xf
i +K(y−Hτ f ) (18)

Same for AOD, let’s confine the states in vertical direction in one pixel. We have one prior AOD τf and aerosol mass prior225

xf
i on total k levels. Define a vertical factor ui which is the ratio of mass of ith level to the mass of all levels first:

ui =
xi

k∑
i=1

xi

(19)

Substitute it into Eq. 18:

Mxa
i

ui
=Mxf

i

ui
+K(y−Hτf ) (20)

10
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Since we only have one observation and one AOD simulation, then the observation operator H, error variance matrix Pf230

and Kalman gain K are:

H = [1], Pf = [σ2
τ ], K =

[
σ2

τ

σ2
τ + σ2

y

]
(21)

Substitute them into Eq. 20 and we have the mass posterior xa
i on each layer:

Mxa
i

uf
i

=Mxf
i

uf
i

+
σ2

τ

σ2
τ + σ2

y

(y− τf ) (22)

235

xa
i = xa

i + uf
i

σ2
τ

σ2
τ + σ2

y

y− τf

M (23)

This equation demonstrates that the analysis increment σ2
τ

σ2
τ+σ2

y

y−τf

M from AOD assimilation is allocated to each level of mass

by the vertical factor ui. When we have an incorrect structure, we can notice that ui ≫ utrue
i or ui ≪ utrue

i . The analysis

increment can be reallocated on the wrong level. Thus amplify the incorrect structure.

Figure 2 (c) demonstrates the negative pattern of assimilating AOD. In the upper row of panel (c.1), we have the ensemble240

AOD priors (gray hollow diamond) and AOD observation (blue solid diamond) that are combined to optimize the 3-D dust

mass field (gray dash line). Similar to panel (b), assume we have an incorrect prior dust mass structure. By assimilating AOD

observations, the AOD posteriors can be tuned to better fit the AOD observation as shown in the upper row in panel(c.2). While

for the structure of mass field, this incorrect structure is overall amplified since the prior DOD simulation implies the model

underestimates the total dust column compared to the observation. Another pattern which the prior mass is incorrectly situated245

on ground level is also illustrated in Supplementary Fig. S1. It is notable that the sensitivity of AOD assimilation to the vertical

structure is not as significant as the ground assimilation since the AOD contains information of total columns.

3.4 Case settings

To demonstrate the sensitivity of aerosol data assimilation on vertical structure, five assimilation analysis cases were selected

and name after P-Ground-Calipso, N-Ground-Calipso, N-Ground-LiDAR, N-DOD-Calipso and NP-DOD-Calipso, respec-250

tively. These cases were selected from the ensemble model run starting from 0:00 14th to 0:00 17th March and 0:00 14th

to 0:00 17th April 2021. The background run consists of 32 ensembles and each of them are driven by perturbated emission

inventories. Details concerning the generation of the ensembles can be found in Jin et al. (2022).

Table 1 lists information about the experiment cases. P-Ground-Calipso is the positive case which shows how the data

assimilation correct the surface concentrations and maintain the correct aerosol structure. N-Ground-Calipso and N-Ground-255

LiDAR are negative cases which shows how the assimilation deteriorates the profile when assimilating ground observations

solely. The time of the former two cases is fixed, and their profiles follow the trajectory of CALIPSO. Hence, by comparison we

can tell the impact of assimilation on vertical structure. The last case focuses on a fixed site. A continuous time-line is used, and

assimilation analysis is performed on each time point. The profiles are compared with high-resolution LiDAR observations.
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N-DOD-Calipso and NP-DOD-Calipso are negative cases that focus on assimilating DOD observations. Himawari-8 DOD260

observations are assimilated. Both of them are validated by the CALIPSO.

Table 1. Experiment configurations

Name Time (CST) Type Assimilated observations Validation data

P-Ground-Calipso 3:00 16th April 2021 positive BC-PM10 CALIPSO

N-Ground-Calipso 3:00 16th March 2021 negative BC-PM10 CALIPSO

N-Ground-LiDAR 15th March 2021 negative BC-PM10 LiDAR

N-DOD-Calipso 14:00 16th March 2021 negative Himawari-8 DOD CALIPSO

NP-DOD-Calipso 14:00 29th March 2021 negative & positive Himawari-8 DOD CALIPSO

4 Results and discussions

This section delves into the sensitivities of data assimilation from ground and DOD observation, with a particular emphasis

on the impact of prior vertical profile. Regarding ground observation assimilation, the discussion is enriched by presenting a

positive case, alongside two illustrative negative examples. The validity of these scenarios is further reinforced from CALIPSO265

satellite observations and LiDAR measurements. This serves to underscore the substantial influence that ground assimilation

can exert on the posterior. Then, the examination of DOD assimilation uncovers its intricacies by showcasing a pair of instances,

highlighting favorable and unfavorable outcomes. These illustrations collectively emphasize the impact DOD assimilation has

on the posterior, thereby underscoring the importance of understanding the vertical profile’s role in the assimilation process for

both ground and DOD observations.270

4.1 Cases on ground assimilation

4.1.1 Positive case

P-Ground-Calipso is aimed to show how the assimilation works properly. Figure 3 (a.1) is time series of ground PM10 and

BC-PM10 from several ground stations that is close to CALIPSO trajectory (< 0.25◦). The assimilation time point, 3:00 16th

April 2021, is selected in this case (highlighted in green). Although it is on the later stage of the dust storm, the concentrations275

were as high as around 400 µgm−3. Through comparison between raw and bias-corrected PM10 (solid and dash line), it is

clear that the scanned region was still dominated by coarse dust aerosol. Figure 3 (c.1 and d.1) are snapshots of average of

ensemble priors and posteriors. We can see that the priors had underestimated the dust load to the south of the domain and

overestimated it to the east. After assimilation analysis, the dust load had been nudged that better fits the observations. The

ground observations had been consistent with the posterior. RMSE has been reduced from 254.83 µgm−3 to 118.03 µgm−3.280

Take a further lookup to the vertical structure. Figure 3 (b) illustrates the extinction coefficient profile from CALIPSO.

From the profile we can tell that the dust was concentrated on the ground over latitude of 34◦ to 38◦ (circled by dash line).
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Vertically, it extended upwards accompanied with terrain from 1 km at 34.5◦ to 2.5 km at 37.5◦. Figure 3 (c.1) shows the prior

dust profile following the same trajectory of the CALIPSO. The color bar here is rescaled to show more detail. At around 41◦

to 42◦, a heavy dust load was simulated (600-800 µgm−3) while CALIPSO didn’t capture the data there. Hence, it can’t be285

validated, and we will focus on the dust at 34◦ to 38◦. At 34◦ to 38◦, the prior model had successfully reproduced the dust

structure indicated by CALIPSO. The concentrations were about 100-300 µgm−3, which is underestimated as shown in Fig. 3

(d.2). After assimilation, the ground concentrations are increased to 400-500 µgm−3 as shown in (c.1) and (d.1). The vertical

structure is also reserved, which is identical to the structure shown by CALIPSO.

4.1.2 Negative case validated by CALIPSO290

N-Ground-Calipso is the negative case that illustrates how data assimilation degrades the aerosol vertical structure. Figure 4

(a.1) is time series of ground PM10 and BC-PM10 from several ground stations that is close to CALIPSO trajectory. As shown

in panel (a), ground dust aerosol loading from ground stations in N-Ground-Calipso was under rapid increase since two hours

before assimilation instance. Meaning that the region in the below rectangle in (c.1) was dust concentrated region.

Evidence from CALIPSO also indicated that there were heavy dust loading. As the Fig. 4 (b) shows, extinction coefficient295

profile from 37◦ to 42◦ (circled by black dash rectangle) exhibits extremely high values (maximum exceeded 2 km−1). It

spread upwards for 1 km at an altitude of 1 km. This region is highlighted by light blue dash rectangle in (c.1) and (d.1).

Inferred from the farther ground stations (concentrations over 1000 µgm−3), this region was dominated by dust aerosols and

is situated on ground level.

The dust profile in (c.2) tells that the ensemble priors agreed that the aerosols were mainly concentrated upwards. The plume300

was floating up to 4 km with the latitude. Only a few dust aerosols over 36◦ to 37◦ on ground (300-600 µgm−3) show consis-

tence with the observations (shown in (c.1) and (c.2)). Great discrepancy exits between the prior and independent observations

at 37◦ to 42◦. After assimilating BC-PM10 concentrations, the overall loading are increased. Great underestimation in east

was improved. However, The dust concentrated region circled in (d.1) are only improved to a small extent. This is due to lack

of observations nearby and the much lower uncertainties exhibited by ensemble priors. In terms of the vertical structure, a305

disturbing profile is obtained. As Fig. 4 (d.2) shows, ground concentrations at 36◦ to 37◦ are aligned to over 600 µgm−3. This

is consistent with surrounding stations. While for the reason mentioned earlier, dust loads over 37◦ to 42◦ are barely corrected.

Yet, these trivial increments significantly enhance the erroneous vertical structure. On ground level, the dust concentrations rise

from less than 100 µgm−3 to nearly 300 µgm−3 at 37◦ to 39◦. The vertical loading are almost 3 times of loading from prior

profile. What’s more, the extremely low region at 39◦ to 42◦ represents a more intense amplification effect than that. Since the310

low values are more sensitive to variations, increments on these values can easily give rise to soaring of the vertical loading.

In this case, this phenomenon can be vividly noticed through the comparison between prior, posterior and measurements for

validation.
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Figure 3. Time series of PM10 and BC-PM10 concentrations during the case from several ground stations that are close to the CALIPSO

trajectory (a). Spatial distribution of ground dust concentrations from the average of the ensemble priors and the posteriors with scatters of

ground BC-PM10 observations (c.1 and posterior d.1). The black line inside is where the CALIPSO scanned through. Figures on the right

column is the extinction profile from CALIPSO (b), dust concentration profile following the CALIPSO scanning trajectory from the prior

(c.2) and the posterior (d.2). The color bars in c.2 and d.3 are rescaled to show more detail. Black line at the bottom is the terrain altitude.

The case time is at 3:00 on 16th April 2021 (CST).
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Figure 4. Time series of PM10 and BC-PM10 concentrations during the case from several ground stations that are close to the CALIPSO

trajectory (a). Spatial distribution of ground dust concentrations from the average of the ensemble priors and the posteriors with scatters of

ground BC-PM10 observations (c.1 and posterior d.1). The black line inside is where the CALIPSO scanned through. Figures on the right

column is the extinction profile from CALIPSO (b), dust concentration profile following the CALIPSO scanning trajectory from the prior

(c.2) and the posterior (d.2). Black line at the bottom is the terrain altitude. The case time is at 3:00 on 16th March 2021 (CST).
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4.1.3 Negative case validated by LiDAR

N-Ground-LiDAR is another negative case. In this case, we don’t focus on single time point. A series of assimilation analyses315

are conducted to investigate the effect. As Fig. 5 (a) shows, a high-resolution profile of dust extinction coefficient from LiDAR

is given to demonstrate the changing structure of dust loading on a fix location. Entering at about 5:00 and then landing at

7:00, this dust storm had lasted for about 20 hours in where the LiDAR located. Time range from 8:00 to 16:00 is selected as

it comprises most of the dust period. During the whole period, the measured dust loading increased from 0.4 km to 1.4 km.

Afterwards, the intensity descended gradually.320

Figure 5 (b) illustrates the hourly prior and posterior dust profile during the selected period. The x-axis which represents

concentrations is logarithmic rescaled here. In terms of prior profiles, dust loading have extended up to 5 km at 8:00 and

declined to 3 km at 16:00. This structure is inconsistent with the LiDAR profile. The dust storm has been overestimated to a

large extent in height. The ground aerosol concentrations are lower than 200 µgm−3 throughout eight time points, which are

much lower than the observations (over 1000 µgm−3). After assimilation, this underestimation has been mitigated. The ground325

dust concentrations are amplified several times to better fit the observations. Meanwhile, the erroneous vertical structure is also

intensified in the first six moments. Especially in 9:00, the dust loading above 2 km have been amplified to over 1000 µgm−3,

which will give out utterly incorrect information about the dust storm structure and impact the further forecasting.

4.2 Cases on DOD assimilation

In this section, the sensitivity of assimilating DOD on the aerosol vertical profile is presented. Starts with the NP-DOD-Calipso330

case. Figure 6 (a) show the spatial distribution of DOD observed by Himawari-8 at 14:00 29th March 2021. The dust plume then

were approaching the east of China and reaching out to the East China Sea. The prior model has reproduced the distribution

while the overall concentration is underestimated (less than 300 µgm−3) as shown in panel (c.1). By assimilating the Himawari-

8 DOD, the overall dust concentration field is increased to over 1000 µgm−3. The posterior dust plume is consistent with the

DOD observations.335

As the extinction profile in panel (b) shows, the dust was concentrated around 32◦ to 38◦ and extended upwards to altitude

of 3 km. In terms of the prior, this structure is partly correct. The dust in red box is located on lower layer and aligns with

the extinction profile. While the dust in blue box reports a higher position. By assimilating DOD, the total column dust field

is optimized and the vertical structure is restored following the prior dust field. As a result, the underestimation is alleviated

and the overall concentrations are increased. The correct dust structure in red box is maintained and the intensity is enhanced.340

However, the incorrect dust structure in blue box is also amplified, causing an obvious fraud dust loading which should located

on lower level.

N-DOD-Calipso is another case that illustrates the negative aspects of assimilating DDO. Figure 7 comprises the same

assimilation experiment results as in NP-DOD-Calipso except at 14:00 16th March 2021. The DOD observations report high

values densely distributed in east and sparsely distributed in north. The prior model simulates the dust plume that concentrated345
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(a)

(b) Dust profiles from priors and posteriors on 2021-03-15 (CST)

km-1

Figure 5. Time series of dust extinction coefficient profile obtained from LiDAR (a). The assimilation analysis is performed hourly from

8:00 to 16:00. Figure below is hourly dust profile line from prior (dash line) and posterior (solid line) (b). The profile data is extracted from

the closest grid point to the LiDAR location. The x-axis is logarithmic rescaled. Note that instead of using the posterior in previous time to

propagate the model, analysis here is separately conducted on the static background.
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Himawari-8 DOD : 2021-03-29 14:00 CST
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Figure 6. Time series of PM10 and BC-PM10 concentrations during the case from several ground stations that are close to the CALIPSO

trajectory (a). Spatial distribution of ground dust concentrations from the average of the ensemble priors and the posteriors with scatters of

ground BC-PM10 observations (c.1 and posterior d.1). The black line inside is where the CALIPSO scanned through. Figures on the right

column is the extinction profile from CALIPSO (b), dust concentration profile following the CALIPSO scanning trajectory from the prior

(c.2) and the posterior (d.2). Black line at the bottom is the terrain altitude. The case time is at 14:00 on 29th March 2021 (CST).
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in north-west. As to the east, only rare dust is noticed. It is caused by instability of model to reproduce the long-term transport

of dust. If we focus on where the CALIPSO scanned through, an increase of dust can be seen.

In terms of CALIPSO, it is certain that the dust is concentrated on lower level at 43◦ to 45◦. There is also dust plume at 39◦

to 42◦ while can’t be verified because of the missing of observation data. Similarly, the prior dust profiles show an incorrect

dust structure as circled by black box in panel (c.2). After assimilation, this error is amplified from around 100 µgm−3to over350

600 µgm−3.

Extinction profile from CALIPSO : 2021-03-16 14:00 CST

(b)

Prior profile : 2021-03-16 14:00 CST

μg m-3
(c.2)

Posterior profile : 2021-03-16 14:00 CST

μg m-3

(d.2)

Himawari-8 DOD : 2021-03-16 14:00 CST

μg m-3

μg m-3

(a)

(d.1)

(c.1)

Figure 7. Snapshot of Himawari-8 DOD at the assimilation instance (a). Spatial distribution of ground dust concentrations from the average

of the ensemble priors (c.1 and posterior d.1). The black line inside is where the CALIPSO scanned through. Figures on the right column is

the extinction profile from CALIPSO (b), dust concentration profile following the CALIPSO scanning trajectory from the prior (c.2) and the

posterior (d.2). Black line at the bottom is the terrain altitude. The case time is at 14:00 on 16th March 2021 (CST).
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5 Conclusions

Data assimilation has been wildly used in construction of reanalysis dataset and improving the predictability of atmospheric

model. The performance of assimilation algorithms relies not only on the methodology themselves but also on the observations.

Nowadays, the complexity and dimensions of atmospheric model have been growing fast. For atmospheric aerosol model, high355

spatial and temporal resolution are becoming feasible. While in terms of observations, they are either outnumbered in space

or discontinuous in time compared to the model. Particularly in vertical direction, the available aerosol measurements are still

limited both in space and time. Through assimilating ground or satellite measurements, the aerosol field can be improved while

in 3D space, it can also amplify the erroneous estimation about the aerosol structure.

In this paper, we explore the sensitivity of aerosol data assimilation to the vertical profile via carrying out five assimila-360

tion experiment cases. Dust aerosol, which is simulated by LOTOS-EUROS, is selected as the optimization target. The data

assimilation methodology, EnKF, is adopted. Bias-corrected ground PM10 concentrations obtained from ground monitoring

stations and DOD from the Himawari-8 are assimilated. Extinction coefficient profile from CALIPSO and Polarization LiDAR

are used to validate the aerosol vertical structure. P-Ground-Calipso is aimed to show how ground data assimilation tune the

vertical structure positively. After assimilation, the ground dust field has been nudged to better fit the observations and the365

vertical structure is enhanced, which is also consistent with the CALIPSO measurements. In contrast, N-Ground-Calipso ex-

hibits drastic negative effect. In this case, even small increments on ground can greatly enhance the incorrect aerosol structure.

N-Ground-LiDAR is another negative case which displays hourly prior and posterior profile. The continuous dust extinction

profile from LiDAR is utilized to validate the structure. In most of the moments, the assimilation improves the ground aerosol

field while significantly degrades the vertical dust loading. N-DOD-Calipso and NP-DOD-Calipso are aimed to show how370

DOD assimilation deteriorates the vertical structure. Different from the ground assimilation, the posterior vertical structure

here is reallocated by the vertical ratio. When the vertical ratio is incorrect, assimilating DOD can also pass down this error.

In conclusion, integrating ground- and satellite-derived aerosol observations into models enhances both the analysis and

forecasting accuracy of the model’s state. However, challenges persist in reconciling these low-dimensional observations with

the model’s high-dimensional state. Specifically, the model’s initial, potentially flawed, vertical aerosol structure could impair375

assimilation efforts. Alarmingly, such inaccuracies can be propagated and exacerbated within the model. This paper has only

scratched the surface by presenting a handful of negative instances, yet it is evident that this issue is pervasive in aerosol

data assimilation. The path forward entails establishing a complementary network of vertical observations and implementing

advanced assimilation methodologies that are sensitive to vertical structures, thereby offering a promising avenue to surmount

these challenges.380

Code and data availability. PyFilter is archived on Zenodo (https://zenodo.org/record/7611976) (Pang, last access: May. 2024), also open

at GitHub (https://github.com/xxcvvv/open-PyFilter). The source code and user guide of the LOTOS-EUROS is available at https://

airqualitymodeling.tno.nl/ (TNO, last access: May 2024). The CALIPSO data can be downloaded at https://www-calipso.larc.nasa.gov/about/
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(NASA, last access: August 2023). The ground PM10 observations can be obtained at https://quotsoft.net/air/ (Wang, last access: May. 2024).

The Himawari-8 aerosol product is available at https://www.eorc.jaxa.jp/ptree.385
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